
LINUX CONTAINER Introduction

For NOVALUG - March 13th, 2021

Peter Larsen
Staff Domain Architect / OpenShift
Red Hat

Some slides copied/borrowed from Scott McCarthy with appreciation for his great presentation skills

Peter Larsen - NovaLUG 20212

● What is a Linux Container / why use them / how to use them
● Using podman/buildah/skopeo on Fedora SilverBlue
● Container demonstrations

Homework! https://learn.openshift.com/subsystems
● You can find a completely hosted solution called Katacoda for your own experiments:

○ All you need is a web browser and Internet access
○ Instructions, code repositories, and terminal will be provided to a real, working virtual machine
○ All code is clickable, all you have to do is click on it and it will paste into the terminal
○ The environment can be reset at any time by refreshing (very nice)
○ Don’t be intimidated by bash examples, there is a lot of gymnastics to make sure the lab can

be run just by clicking. Feel free to ask me about bash stuff.

AGENDA
Introduction - Linux Containers

https://learn.openshift.com/subsystems

First a bit of HISTORY
Containers are not a new thing!

THE HISTORY OF CONTAINERS

2008:
KERNEL & USER
NAMESPACES

2008:
LINUX
CONTAINER
PROJECT (LXC)

2013:
DOTCLOUD
BECOMES
DOCKER

2013:

RED HAT
ENTERPRISE
LINUX

20
00

20
10

20
05

2000:

JAILS ADDED
TO FREEBSD

2006:
PROCESS
CONFINEMENT

2007:
GPC RENAMED
CGROUPS

2014:
GOOGLE
KUBERNETES

2001:
LINUX -VSERVER
PROJECT

2003:

SELINUX
ADDED TO LINUX
MAINLINE

2005:
FULL RELEASE
OF SOLARIS
ZONES

2013:
DOTCLOUD PYCON
LIGHTNING TALK

1979:

CHROOT
SYSCALL ADDED

19
79

2017:
Moby project
Announced

2018:
CRI-O is GA and
powers OpenShfit
Online

CONTAINER INNOVATION IS NOT FINISHED

20
17

20
16

20
18

2015:
Tectonic
Announced

2016:
Docker engine 1.12
adds swarm

2016:
CRI-O project
launched under
the name OCID

2017:
Buildah released
and ships in RHEL

2018:
Podman released
and ships in RHEL

2017:
Kata merges Clear
& RunV projects

2017:
Docker includes
the new
containerd

2016:
Containerd
project launched

2017:
V1.0 of image &
runtime spec

2018:
V1.0 of
distribution spec

2016:
Skopeo project
launched under
the name OCID

20
15

2015:

RED HAT
CONTAINER
PLATFORM 3.0

2015:
STANDARDS VIA
OCI AND CNCF

INTRODUCTION
What is a container?

7

WHAT ARE CONTAINERS?
It Depends Who You Ask

● Application processes on a shared kernel

● Simpler, lighter, and denser than VMs

● Portable across different environments

● Package apps with all dependencies

● Deploy to any environment in seconds

● Easily accessed and shared

INFRASTRUCTURE APPLICATIONS

8

VIRTUAL MACHINES AND CONTAINERS

VIRTUAL MACHINES CONTAINERS

VM virtualizes the hardware Container virtualizes the process

VM

OS Dependencies

Kernel

Hypervisor

Hardware

App App App App

Hardware

Container Host (Kernel)

Container

App

OS deps

Container

App

OS deps

Container

App

OS deps

Container

App

OS deps

9

Virtual Machine

Application

OS dependencies

Operating System

VIRTUAL MACHINES AND CONTAINERS

VM Isolation
Complete OS
Static Compute
Static Memory
High Resource Usage

Container Isolation
Shared Kernel
Burstable Compute
Burstable Memory
Low Resource Usage

Container Host

Container

Application

OS dependencies

10

VIRTUAL MACHINES AND CONTAINERS

Container Host

Container

Application

OS dependencies

Dev

IT Ops
Infrastructure

Virtual Machine

Application

OS dependencies

Operating System

IT Ops
(and Dev, sort of)

Infrastructure

Clear ownership boundary
between Dev and IT Ops
drives DevOps adoption

and fosters agility

Optimized for stability

Optimized for agility

11

Virtual machines are NOT portable across hypervisor and
do NOT provide portable packaging for applications

APPLICATION PORTABILITY WITH VM

VM Type X

Application

OS dependencies

Operating System

BARE METAL PRIVATE CLOUD PUBLIC CLOUDVIRTUALIZATIONLAPTOP

Application

OS dependencies

Operating System

VM Type Y

Application

OS dependencies

Operating System

VM Type Z

Application

OS dependencies

Operating System

Guest VM

Application

OS dependencies

Operating System

12

APPLICATION PORTABILITY WITH CONTAINERS

LAPTOP

Container

Application

OS dependencies

Guest VM

Linux

BARE METAL

Container

Application

OS dependencies

Linux

VIRTUALIZATION

Container

Application

OS dependencies

Virtual Machine

Linux

PRIVATE CLOUD

Container

Application

OS dependencies

Virtual Machine

Linux

PUBLIC CLOUD

Container

Application

OS dependencies

Virtual Machine

Linux

Containers + Container Host = Guaranteed Portability
Across Any Infrastructure

13

Base Image

Image Layer 1

Image Layer 2

Image Layer 3

Base RHEL

OS Update Layer

Java Runtime Layer

Application Layer

Container Image Layers Example Container Image

RAPID SECURITY PATCHING USING
CONTAINER IMAGE LAYERING

DIGITAL WORKLOADS ARE MOVING TO CONTAINERS

LIFT & SHIFT

Better manage scalability
and fast-moving

application development
cycles

Meet user demand, give
them the ability to

perform common tasks

Migrate existing
applications into more

efficient container
environments

MOBILEMICROSERVICES

Move faster & find time
for innovation, aligned to

business needs

ANALYTICS

15

A container is the smallest compute unit

CONTAINER

16

containers are created from
container images

CONTAINERCONTAINER
IMAGE

BINARY RUNTIME

17

IMAGE REGISTRY

container images are stored in
an image registry

CONTAINER

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

18

an image repository contains all versions of an
image in the image registry

IMAGE REGISTRY

frontend:latest
frontend:2.0
frontend:1.1
frontend:1.0

CONTAINER
IMAGE

mongo:latest
mongo:3.7
mongo:3.6
mongo:3.4

CONTAINER
IMAGE

myregistry/frontend myregistry/mongo

“Podman” and gang

We’ll be using podman for most of this talk (more details in a bit). Podman can easily be installed on all

major distributions:

● https://podman.io/getting-started/installation

Notice the “Fedora SilverBlue” mention: No need to install! We’ll be using SilverBlue for this talk!

Why?

- “Podman” does not require root access! No daemon required.

What-ever we write starting with “podman” can be written using “docker” instead if you use docker!

19

https://podman.io/getting-started/installation

Fedora SilverBlue

● https://silverblue.fedoraproject.org

● Container OS - ostree based

● Built to run container workloads

● (and flatpaks)

20

https://silverblue.fedoraproject.org

Let’s See some Container Stuff!

Demo time!

Peter Larsen - NovaLUG 202122

Introduction
Four new tools in your toolbelt

Container Images
The new standard in software packaging

Container Hosts
Container runtimes, engines, daemons

Container Registries
Sharing and collaboration

Container Orchestration
Distributed systems and containers

AGENDA
Introduction - Linux Container Internals

Peter Larsen - NovaLUG 202123

Container Standards
Understanding OCI, CRI, CNI, and more

Advanced Architecture
Building in resilience

Container History
Context for where we are today

AGENDA
Advanced - Linux Container Internals

Container Tools Ecosystem
Podman, Buildah, and Skopeo

Production Image Builds
Sharing and collaboration between specialists

Intermediate Architecture
Production environments

24

Production-Ready Containers
What are the building blocks you need to think about?

CONTAINER IMAGES

Peter Larsen - NovaLUG 202126

Even base images are made up of layers:

● Libraries (glibc, libssl)
● Binaries (httpd)
● Packages (rpms)
● Dependency Management (yum)
● Repositories (rhel7)
● Image Layer & Tags (rhel7:7.5-404)
● At scale, across teams of developers

and CI/CD systems, consider all of the
necessary technology

CONTAINER IMAGE
Open source code/libraries, in a Linux distribution, in a tarball

Peter Larsen - NovaLUG 202127

Lots of payload media types:

● Image Index/Manifest.json - provide
index of image layers

● Image layers provide change sets -
adds/deletes of files

● Config.json provides command line
options, environment variables, time
created, and much more

● Not actually single images, really
repositories of image layers

CONTAINER IMAGE PARTS
Governed by the OCI image specification standard

Peter Larsen - NovaLUG 202128

Starting with the basics:

● Programs rely on libraries
● Especially things like SSL - difficult to

reimplement in for example PHP
● Math libraries are also common
● Libraries can be compiled into

binaries - called static linking
● Example: C code + glibc + gcc =

program

IT ALL STARTS WITH COMPILING
Statically linking everything into the binary

Peter Larsen - NovaLUG 202129

Getting more advanced:

● This is convenient because programs
can now share libraries

● Requires a dynamic linker
● Requires the kernel to understand

where to find this linker at runtime
● Not terribly different than interpreters

(hence the operating system is called
an interpretive layer)

LEADS TO DEPENDENCIES
Dynamically linking libraries into the binary

Peter Larsen - NovaLUG 202130

Dependencies need resolvers:

● Humans have to create the
dependency tree when packaging

● Computers have to resolve the
dependency tree at install time
(container image build)

● This is essentially what a Linux
distribution does sans the installer
(container image)

PACKAGING & DEPENDENCIES
RPM and Yum were invented a long time ago

Peter Larsen - NovaLUG 202131

Dependencies need resolvers:

● Humans have to create the
dependency tree when packaging

● Computers have to resolve the
dependency tree at install time
(container image build)

● Python, Ruby, Node.js, and most
other interpreted languages rely on C
libraries for difficult tasks (ex. SSL)

PACKAGING & DEPENDENCIES
Interpreters have to handle the same problems

Peter Larsen - NovaLUG 202132

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

LAYERS ARE CHANGE SETS
Each layer has adds/deletes

Peter Larsen - NovaLUG 202133

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

LAYERS ARE CHANGE SETS
Some layers are given a human readable name

Peter Larsen - NovaLUG 202134

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

CONTAINER IMAGES & USER OPTIONS
Come with default binaries to start, environment variables, etc

Peter Larsen - NovaLUG 202135

You have to build this dependency tree
yourself:

● DRY - Do not Repeat Yourself. Very
similar to functions and coding

● OpenShift BuildConfigs and
DeploymentConfigs can help

● Letting every development team
embed their own libraries takes you
back to the 90s

INTER REPOSITORY DEPENDENCIES
Think through this problem as well

Peter Larsen - NovaLUG 202136

Even base images are made up of layers:

● Libraries (glibc, libssl)
● Binaries (httpd)
● Packages (rpms)
● Dependency Management (yum)
● Repositories (rhel7)
● Image Layer & Tags (rhel7:7.5-404)
● At scale, across teams of developers

and CI/CD systems, consider all of the
necessary technology

CONTAINER IMAGE
Open source code/libraries, in a Linux distribution, in a tarball

CONTAINER REGISTRIES

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

REGISTRY SERVERS
Better than virtual appliance market places :-)

Defines a standard way to:

● Find images
● Run images
● Build new images
● Share images
● Pull images
● Introspect images
● Shell into running container
● Etc, etc, etc

Peter Larsen - NovaLUG 202139

Covering push, pull, and registry:

● Rest API (blobs, manifest, tags)
● Image Scanning (clair)
● CVE Tracking (errata)
● Scoring (Container Health Index)
● Graph Drivers (overlay2, dm)
● Responsible for maintaining chain of

custody for secure images from
registry to container host

CONTAINER REGISTRY & STORAGE
Mapping image layers

Peter Larsen - NovaLUG 202140

Determining the quality of repository
requires meta data:

● Errata is simple to explain, hard to
build

○ Security Fixes
○ Bug Fixes
○ Enhancements

● Per container images layer (tag), often
maps to multiple packages

START WITH QUALITY REPOSITORIES
Repositories depend on good packages

Peter Larsen - NovaLUG 202141

Based on severity and age of Security
Errata:

● Trust is temporal
● Even good images go bad over time

because the world changes around
you

SCORING REPOSITORIES
Images age like cheese, not like wine

Peter Larsen - NovaLUG 202142

Based on severity and age of Security
Errata:

● Trust is temporal
● Images must constantly be rebuilt to

maintain score of “A”

SCORING REPOSITORIES
Container Health Index

Peter Larsen - NovaLUG 202143

Registry has all of the image layers and can
have the signatures as well:

● Download trusted thing
● Download from trusted source
● Neither is sufficient by itself

PUSH, PULL & SIGNING
Signing and verification before/after transit

Peter Larsen - NovaLUG 202144

PUSH, PULL & SIGNING
Mapping image layers

Peter Larsen - NovaLUG 202145

Local cache maps each layer to volume or
filesystem layer:

● Overlay2 file system and container
engine driver

● Device Mapper volumes and
container engine driver

GRAPH DRIVERS
Mapping layers uses file system technology

Peter Larsen - NovaLUG 202146

PUSH, PULL & SIGNING
Mapping image layers

Peter Larsen - NovaLUG 202147

Covering push, pull, and registry:

● Rest API (blobs, manifest, tags)
● Image Scanning (clair)
● CVE Tracking (errata)
● Scoring (Container Health Index)
● Graph Drivers (overlay2, dm)
● Responsible for maintaining chain of

custody for secure images from
registry to container host

CONTAINER REGISTRY & STORAGE
Mapping image layers

DEMO TIME
How to use images/registries

CONTAINER HOSTS

Peter Larsen - NovaLUG 202150

CONTAINER HOST BASICS
Container Engine, Runtime, and Kernel

Peter Larsen - NovaLUG 202151

Important corrections

● Containers do not run ON docker.
Containers are processes - they run
on the Linux kernel. Containers are
Linux processes (or Windows).

● The docker daemon is one of the
many user space tools/libraries that
talks to the kernel to set up
containers

CONTAINERS DON’T RUN ON DOCKER
The Internet is WRONG :-)

Peter Larsen - NovaLUG 202152

User space and kernel work together

● There is only one process ID structure
in the kernel

● There are multiple human and
technical definitions for containers

● Container engines are one technical
implementation which provides both
a methodology and a definition for
containers

PROCESSES VS. CONTAINERS
Actually, there is no processes vs. containers in the kernel

Peter Larsen - NovaLUG 202153

Think of the Docker Engine as a giant proof
of concept - and it worked!

● Container images
● Registry Servers
● Ecosystem of pre-built images
● Container engine
● Container runtime (often confused)
● Container image builds
● API
● CLI
● A LOT of moving pieces

THE CONTAINER ENGINE IS BORN
This was a new concept introduced with Docker Engine and CLI

Peter Larsen - NovaLUG 202154

DIFFERENT ENGINES
All of these container engines are OCI compliant

Podman CRI-O Docker

Peter Larsen - NovaLUG 202155

CONTAINER ENGINE VS. CONTAINER HOST
In reality the whole container host is the engine - like a Swiss watch

VS.

Peter Larsen - NovaLUG 202156

Tightly coupled communication through the
kernel - all or nothing feature support:

● Operating System (kernel)
● Container Runtime (runc)
● Container Engine (Docker)
● Orchestration Node (Kubelet)
● Whole stack is responsible for

running containers

CONTAINER HOST
Released, patched, tested together

Building and creating containers

Peter Larsen - NovaLUG 202158

● Traditional method to describe how to create a container
● Common keywords:

○ FROM
○ RUN
○ ENTRYPOINT
○ COPY
○ MAINTAINER
○ ENV
○ WORKDIR
○ EXPOSE

The “Dockerfile”

Peter Larsen - NovaLUG 202159

FROM nginx

ENV AUTHOR=Docker

WORKDIR /usr/share/nginx/html

COPY Hello_docker.html /usr/share/nginx/html

CMD cd /usr/share/nginx/html && sed -e s/Docker/"$AUTHOR"/ Hello_docker.html >
index.html ; nginx -g 'daemon off;'

Dockerfile example

Peter Larsen - NovaLUG 202160

● Every RUN/COPY creates new
image layer

● You must specify network port to
expose

● You must specify a base image
to start from or specify “scratch”
and you must copy all artifacts in
(from a tar ball from instance)

● Use your local directory to hold
data you want inserted into the
container image.

Another Example

Peter Larsen - NovaLUG 202161

● Buildah allows you to interactively create a container image
● You can inspect the image, commit when you want and test things
● Buildah can use dockerfiles ! (buildah bud)
● Dockerfile commands are buildah commands:

○ Buildah copy
○ Buildah run
○ Buildah from

● Buildah config sets metadata like entrypoint, workingdir etc.
●

Introducing buildah
A more flexible way to build/manage containers

Peter Larsen - NovaLUG 202162

● Easy debugging
● Easy inspection

Buildah Example

Peter Larsen - NovaLUG 202163

● Mountpoints!
○ Add your container image to your local file system to inspect the content!
○ Modify this local file system and commit - and the changes go straight to the

container. Multiple commands result in a single image layer!
● Example

○ mountpoint=$(buildah mount ${container})
sudo dnf install nginx --installroot $mountpoint
chroot $mountpoint nginx -v
nginx version:......

Buildah - the really cool stuff!

Peter Larsen - NovaLUG 202164

● Containers are immutable
○ Every time a container image is run a new copy-on-write layer is created
○ When a container stops running and you’re using the --rm parameter, this

temporary layer is deleted. The container image is clean.
○ You can run a container without the --rm and use “podman commit” to write this

temporary layer to a new version of the container image.
○ This includes temporary files and more - so be careful using it.

● Always assume your containers are immutable
● Data and configuration should be external to the container - in secrets or environment

variables or a bind mount file system.

Another way to make changes

DEMO TIME
Let’s build some containers

Thanks for listening

Tune in next month for OpenShift
The Enterprise Kubernetes Platform

