
To PostgreSQL
And Beyond...

NOVALUG Meetup 2021

Hello!

About PostgreSQL
● PostgreSQL is an advanced open source object-relational database

○ Code goes back a long time, Postgres started in 1982, PostgreSQL came along in 1996

● Well regarded for
○ Reliability and data integrity
○ Feature robustness and correctness
○ Performance and scalability
○ Features available and SQL spec adherence
○ Extensibility, flexibility and a long history of innovation
○ Supported on a wide range of platforms

● Won DB-Engines Database of the year 3 times, including 2020
● More: https://www.postgresql.org/

Getting Started: Installing
● You'll find PostgreSQL in most distro packages
● PGDG provide 'official' packages for a range of distros

○ https://www.postgresql.org/download/

● Installing is a case of:
○

○

Getting Started: Connecting
● Easiest way to connect first time round is via psql, the PostgreSQL SQL CLI

○ `sudo -u postgres psql`
■ This will connect to PostgreSQL as the `postgres` superuser

○ pgAdmin4 is the defacto graphical client
○ OmniDB, DBeaver, Navicat, are alternatives

● A PostgreSQL server hosts many databases (so called database cluster)
○ Each database is isolated from each other

■ You cannot query across databases
■ Databases still have schemas inside for namespacing

○ A default database `postgres` exists and a couple of template databases
■ Do not use these, create a database for your application first

chris-desktop:/home/cellis # sudo -u postgres psql
psql (13.1, server 13.1)
Type "help" for help.

postgres=# CREATE ROLE demo LOGIN NOSUPERUSER;
CREATE ROLE
postgres=# \password demo
Enter new password:
Enter it again:
postgres=# CREATE DATABASE demo OWNER demo;
CREATE DATABASE
postgres=# \q

Getting Started: Basic Config
● PostgreSQL has 2 main configuration files

○ These are all per 'database cluster'
○ These files are typically in the data directory, some distros move them to /etc

●
○ This is the main PostgreSQL configuration file
○ Changing some options will require a restart of the PostgreSQL server processes

●
○ This is the host based access configuration file

■ It controls which network clients can connect and how they should authenticate
○ Changes to this file don't require a restart of the PostgreSQL server processes

■ It's reread if the postmaster process receives a SIGHUP

Getting Started: Config Gotchas
● Out of the box config is conservative and safe

○ Enable remote access:
○ Maximum number of clients:
○ Increase logging

● Constraints on replication / backups by default
○ Worth raising
○ Worth raising the

● Remote access
○ Probably want to update to allow remote users to connect

Getting Started: Perf Gotchas
● A few basic settings you look at:

○
■ Rule of thumb is 25% of server RAM for a dedicated DB server

○ /
■ You want to aim for consistent I/O under load

○
■ Don't set this too high, it's allocated multiple times per connection

○
■ For SSDs lower this to around 1.1

○
■ You might find bad advice about turning this off, do not! Ever!

● Checkout: https://pgtune.leopard.in.ua/

Getting Started: Perf Gotchas
● Use SSDs!
● Filesystems

○ Most modern are good: XFS, EXT4, BTRFS all offer good performance
○ Don't use NFS

● Kernel
○ Disable memory overcommit on dedicated servers and reduce swapiness (or no swap)
○ Tune the page cache dirty writing - want consistent I/O rather than spiky

● Benchmark:
○
○

Getting Started: Upgrades
● Updating between major versions of PostgreSQL is not so straightforward

○ Major versions are: 9.5, 9.6, 10, 11, 12, 13
○ Minor changes are simple: 13.1 to 13.2, 9.5.1 to 9.5.2 is just install and restart

● The PostgreSQL data directory (where your database resides on disk) is not
compatible between major releases

○ You cannot start PostgreSQL 13 with a 12 data directory

● However there is `pg_upgrade` which solves most issues
○ This will convert the data directory from major version to major version
○ Can actually be very fast to run, even on large databases
○ It is an offline tool!

Primary

Replica

Replica

Replica

Primary

Replica

Replica

ReplicaPrimary

Primary

Shard 0

Shard 1

Shard n

Replication: Streaming Replication
● PostgreSQL has asynchronous and synchronous replications built in
● This lets you replicate all databases and changes between servers

○ All servers must be of the same major version

● It works by streaming the Write Ahead Log (WAL) from the primary server to
all secondary servers and replaying the changes

● Secondary server can run in hot standby mode, this allows them to execute
read only queries

● By default is asynchronous, so there can be a lag between writing to the
primary and data being available on a replica

Replication: Synchronous Streaming Replication
● Will block client transaction commit until all replicas have replayed it.

○ This will have some performance impact

● Also supports quorum commit
○ Meaning a transaction is committed when a majority or replicas have replayed it

● Can also be enabled on a transaction by transaction basis

Replication: Logical Replication
● A scalpel compared to the sledgehammer of streaming replication

○ Lets you replicate at the table by table level
○ Performs change data capture by decoding the WAL stream
○ Handles the initial data synchronization

● Can replicate between different major versions of PostgreSQL
○ Can be used to perform live database upgrades

● Lets you replicate to other data systems
○ You can stream logical changes anyway you like

■ For example into Kafka or Pulsar

● Fair bit newer that streaming replication
○ Since PostgreSQL 10

Replication: Clustering / High Availability
● PostgreSQL doesn't have any clustering

capabilities out of the box
○ Again clustering databases is a huge and complex topic

● However replication gives you the building
blocks

○ External tools need to provide:
■ Failover between nodes
■ Load balancing between nodes

○ Tools built around this like:
■ Patroni
■ pg_autofailover

Primary

Replica

Replica

Load Balancer

Replication: Clustering / Sharding
● No out of the box sharding

○ It's a pretty niche use case, you probably don't need it
○ Scale up first
○ Distributed ACID is extremely difficult (CAP theorem)

● But there are approaches
○ pl/proxy
○ Foreign Data Wrapper (FDW)
○ Logical Replication

■ BDR
○ Citus
○ PostgreSQL XL
○ Application Layer

Primary

Shard 0

Shard 1

Shard n

SQL

JSON / JSONB
● The growth of NOSQL was mainly around document databases, which often

espoused the ability to store data without a schema
● PostgreSQL reacted by adding a JSON data type and various support

functions
○ Originally this was just stored as text (but validated as JSON)
○ Functions to convert rows to JSON object, construct JSON nodes via SQL

● Then came along JSONB
○ Stores schemaless JSON data in a binary format
○ Fully index accelerated
○ Basically MongoDB in a column

JSON / JSONB

JSON / JSONB

JSON / JSONB

JSON / JSONB

JSON / JSONB

JSON / JSONB

JSON / JSONB

Full Text Search
● Provides text based searching inside PostgreSQL

○ Lets your search for words within text documents
○ Provides ranking capabilities for sorting which document best matches your search
○ Search for multiple words, phrase search
○ Provides stemming and snowballing
○ Supports multiple languages

● Originally started off as an extension, eons ago
○ Introduced pluggable index support to PostgreSQL

■ PostgreSQL does a lot more than just BTrees

Full Text Search

Full Text Search

Full Text Search

Going global: PostGIS
● PostGIS is a complete geographic information system for PostgreSQL

○ Add geographic and geometry data types
○ Add a huge number of functions for working with these data types
○ Provides external tools for loading data into PostgreSQL from various geographic data formats

● PostGIS is probably the biggest and most widely used external extension
○ This means you will need to install the libraries separately

chris-desktop:/home/cellis # zypper in postgresql12-postgis postgresql12-postgis-utils
...
chris-desktop:/home/cellis # sudo -u postgres psql
psql (13.1, server 13.1)
Type "help" for help.

postgres=# \c demo
postgres=# CREATE EXTENSION postgis;
postgres=# \q

Going global: PostGIS - Search within a distance

SQL
In 2021

Modern SQL: WITH queries (CTEs)

Modern SQL: Recursive CTEs

Modern SQL: FILTER

Modern SQL: Window Functions

Modern SQL: Window Functions

Modern SQL: Window Functions

… …

Modern SQL: Window Functions

Modern SQL: Window Functions - Custom Aggregates

Modern SQL: Window Functions - Custom Aggregates

So Long And Thanks For All The Fish

● Thanks for listening
○ I hope I didn’t bore you too much

● Questions?

