
PostgreSQL for IoT
The Internet Of Strange Things

PGCONF.EU 2019 - Milan
Shropshire / NoVa LUG 2020



Hello!
● I’m Chris

○ IT jack of all trades, studied Electronic Engineering

● Been using PostgreSQL for about 15 years
● Very much into Open Source

○ Started Bergamot Monitoring - open distributed monitoring

● Worked on various PostgreSQL systems
○ Connected TV Set top boxes
○ Smart energy meter analytics
○ IoT Kanban Board
○ IoT CHP Engines
○ Mixes of OLTP and OLAP workloads
○ Scaled PostgreSQL in various ways for various situations



IoT



One size fits all?



One size fits all?



Time series databases

● Lots of specialised time series datastores
○ Single use case solutions
○ Have their own querying languages
○ Limited data types



Why PostgreSQL?

● The same reason I constantly go back to PostgreSQL
○ We don’t call it the `world’s most advanced Open Source 

relational database` without just cause
○ It’s flexible
○ It’s extensible
○ It puts up with you
○ It cares

● IoT is not a simple, one size fits all problem
○ It’s not just time series data
○ I find single solution data stores, a bit, pointless



Why PostgreSQL?

● PostgreSQL makes it easy to combine your time series data with other data
○ You know: a join!

● Find me the average energy consumption of Shropshire?
● Find me the average energy consumption for 4 bed houses during the 

summer?
● Find me the average, min, max energy consumption for 4 bed houses during 

summer in Shropshire for a half hourly period?
● What is the average energy consumption for houses within x miles of my 

house?



"Where you must go; where the path of the One ends."



"Where you must go; where the path of the One ends."

● The source of your data is usually a small embedded system
○ Can have very variable capabilities

■ From not enough to far to much

● ESP-32
○ Dual core 32bit @ upto 240MHz
○ 520KiB SRAM (D&I)
○ Typically 4MiB SPI Flash ROM
○ WiFi, TCP/IP stack
○ Runs FreeRTOS



"Where you must go; where the path of the One ends."
● Some devices can be pretty 

powerful with good RAM and 
storage

● Smart Home Hub
○ Single Core 1GHz ARM Cortex-A8
○ 512 MiB RAM
○ 4 GiB Flash eMMC Storage
○ WiFi + Ethernet
○ Zigbee
○ Runs Linux



"Where you must go; where the path of the One ends."

● Other devices can be even stranger
○ Whole string of controllers and modules
○ Fairly busy control system, connectivity is not a priority

● Industrial Control
○ Single Core 200MHz ARM7
○ 128 MiB RAM
○ >8GB SD Card
○ Ethernet
○ Lots of CAN
○ Runs a RTOS, hard real time
○ Doing other very important things



Collecting Data



Collecting Data - Device ←→ Platform

● Probably using MQTT between device and platform
○ Seen AMQP to platform (terrible idea)

■ And some strange reinventions of TCP over UDP and DNS
○ Most likely sending binary data, especially if low end device

● Consumer devices might need to be careful of
○ Bandwidth utilisation
○ Power consumption

● Devices operating in remote environments
○ Need to be careful with battery usage

■ Eg: Gas meters must be battery powered
○ GPRS backhaul, slow, expensive during daytime



Collecting Data - Device ←→ Platform

● Be selective about how you send data
○ A lot of use cases don’t need low latency real time data feeds

■ Can switch to a fast mode when you need it
○ In the cloud you often get charged per message

■ Cheaper to send 1 big message than lots of small messages

● Business model
○ IoT products are quite often hero products, one off income (especially in consumer)
○ Yet you have recurring directly coupled costs

● Can be difficult to authenticate devices
○ TLS client auth often used, certs can be extracted and usually cover lots of devices
○ Low end devices harder to do certificates
○ Huge risk of people being able to fake data or do fun things



Storing Data



Storing Data



Storing Data - Range Types



Storing Data - Metadata



Storing Data - Rolling On Up



Storing Data - Rolling On Up

24 bytes

device_id read_at temperature light

16 8 4 4

32 bytes



Loading Data



Loading Data - Batching

● Load in batches
● Don’t use autocommit
● Batching ramps up 

fast:
○ Autocommit: 300 /s
○ Batch of 10: 2k2 /s
○ Batch of 50: 5k5 /s
○ Batch of 100: 6k /s
○ Batch of 300: 8k /s

● Batching gives ~ 20x 
performance gain



Loading Data - Batching



Loading Data - Comparing Loading Methods

● Batched inserts offer 
a big gain over single 
insert statements

● Copy has a huge 
speed up over even 
batched inserts with 
the same batch size

● Checkpointing is 
useful to keep latency 
consistent



Loading Data - Copy Performance

● Copy starts fast and 
ramps up quickly with 
batch size

●



Loading Data - ON CONFLICT

● Use ON CONFLICT
● Your data will be crap

○ Duplicate PKs
○ Out of order

● Nothing worse than having 
your batch abort

○ Need to deal with savepoints, 
application buffers

○ Gets rather complex



Loading Data - Unlogged

● UNLOGGED tables 
will ramp up faster 
than LOGGED tables 
with respect to batch 
sizes

● Little improvement 
over optimized batch 
loading



Loading Data - Parallel

● Loading in parallel will 
let you push more in

● Roughly linear until 
you hit CPU or 
Storage limits



Loading Data - Never Sleeping

● IoT data is often constant, never sleeping, never lets up
○ Also insert / append only doesn’t trigger AutoVac, your tables don’t get ANALYSEd

● This can really stresses replication
○ Regardless of sync vs async replication
○ You need to ensure that your replicas can keep up with the constant torrent of data

■ Replication replay is single threaded, this can have a huge impact on lagging

● You don’t really get your nightly maintenance window
○ Need to be careful with backups
○ Maintenance jobs might need more planning



Loading Data - When Thing Go Wrong



Loading Data - When Thing Go Wrong

● Devices should skew times and back off when things go wrong
○ Can be very easy to trigger congestive collapse

■ Only needs a minor trigger
○ Don’t forget this is more about comms, rather than sampling time

● Your devices should still do sensible things without your platform
● Your data loading system should throttle inserts

○ Don’t want impact of devices taking your DB out, and thus most of the platform
○ It’s probably better to drop data or buffer more than fall flat on your face



Managing Data



Managing Data - Partitioning

M
O

N
D

A
Y TU

ESD
AY

W
ED

N
ESD

AY

TH
U

R
SD

AY



Managing Data - Partitioning



Managing Data - Partitioning



Managing Data - Partition Loading Performance

● Insert into partition 
parent table

● Inserts need to be 
directed to the correct 
partition

● This has a slight 
performance drop



Managing Data - Partition Retention



Managing Data - Tablespaces



Managing Data - BRIN



Managing Data - BRIN



Managing Data - BRIN



Processing Data



Processing Data - Putting Stuff Together



Processing Data - Putting Stuff Together



Processing Data - Presenting Data



Processing Data - Window Functions



Processing Data - Counters



Processing Data - Rolling Along

… …



Processing Data - Moving On Up



Processing Data - Mind The Gap!



Processing Data - Mind The Gap



Processing Data - Mind The Gap



Processing Data - Mind The Gap



Processing Data - Mind The Gap



Processing Data - Mind The Gap

… …



Extensions - TimescaleDB

● TimescaleDB is a PostgreSQL extension for time series data
○ Open Source and Commercial licences

● You can do time series data in PostgreSQL without it
○ Nothing I’ve covered so far needs TimescaleDB

● But TimescaleDB does offer some pretty cool features and is worth having a 
look at:

○ Benchmarks - 5.4x faster 10% resources compared with Cassandra
○ Hypertables (partitioning), supports 2d partitioning
○ Some very handy functions for dealing with time series data
○ Continuous Views - Build materialised roll up aggregates in real time



So Long And Thanks For All The Fish

● Thanks for listening
○ I hope I didn’t bore you too much

● Questions?


