
Creating the Longmynd
Receiver

An exercise in reverse engineering

 - Heather Lomond

So What is the Problem?

For quite a few years, the Amateur TV community had
relied on a product called Minitiouner: a nice hardware
kit and Windows based, free software that is Closed
Source. Developed by Jean-Pierre F6DZP.

Since most ATV is done portable this meant that you had
to have a Windows PC , a PC display and (mostly) Mains
Power to see the TV pictures.

Amateur TV people love to tinker and play with things
but with no source available this couldn’t happen.

Minitiouner HW

Minitioune SW

Enter Portsdown

About 5 years ago, a group of ATV enthusiasts developed
the Portsdown ATV Transmitter based on a Raspberry Pi.

This was Open Source, suitable for Portable operation,
could be run off Batteries and had a small Touch Screen.

Wouldn’t it be nice if we could turn Portsdown into a
TRX (Transmitter AND Receiver).

The concept of Longmynd was born.

First off, is the RPI up to it?

As a test, I wrote some code for the Portsdown that
would allow it to stream video from the internet and
display it using one of the TS (transport steam) decoders
available for the RPI.

Tests on this showed the RPI peaking at 20% CPU. Since
USB is more than capable of streaming video, then the
overall system should be able to cope quite easily.

Final test results showed 20% CPU utilisation when
streaming a 2MS video.

So, What is the Hardware Doing

Our Mission

The hardware interfaces with the outside world via USB.
So, there are 2 parts to our problem:

• Replicate the FTDI API
• Replicate the NIM API
• Implement an RPI based decoder and display

Starting on the FDTI API

The FTDI module is programmable but all I had was a
binary image for the program. So I needed to take a look
at the USB traffic to see what was going on.

Enter Wireshark

Wireshark for the PC has a USB option. Since we had no
idea what we were going to see, The first run was with
no filters, just the USB port of interest.

The first system run

The data was gathered by:
• setup the Portsdown to transmit a video signal
• start Wireshark watching the USB traffic
• start the Minitioune software
• Instruct Minitioune to find the signal, lock on to it

and display it
• Once we had video, stop Wireshark

 (total data collection time about 21 seconds)

Wireshark output

There are 2 data views available from Wireshark:

• The txt file (interpretation)
• And the bin file of the raw data

Wireshark – 144 Mbytes txt file

 1 0.000000 host 2.3.0 USB 36 URB_CONTROL out

0000 1c 00 40 1b f0 b5 85 95 ff ff 00 00 00 00 17 00 ..@.............

0010 00 02 00 03 00 00 02 08 00 00 00 00 40 00 00 00 @...

0020 02 00 00 00

 2 0.000228 2.3.0 host USB 28 GET STATUS Status

0000 1c 00 40 1b f0 b5 85 95 ff ff 00 00 00 00 08 00 ..@.............

0010 01 02 00 03 00 00 02 00 00 00 00 02

 3 0.000313 host 2.1.0 USBHUB 36 GET_STATUS Request

 [Port 1]

0000 1c 00 a0 54 80 aa 85 95 ff ff 00 00 00 00 32 00 ...T..........2.

0010 00 02 00 01 00 80 02 08 00 00 00 00 a3 00 00 00

0020 01 00 04 00

 4 0.000475 2.1.0 host USBHUB 32 GET_STATUS Response

 [Port 1]

0000 1c 00 a0 54 80 aa 85 95 ff ff 00 00 00 00 32 00 ...T..........2.

0010 01 02 00 01 00 80 02 04 00 00 00 01 03 05 00 00

 A more useful format: trace.bin

And on and on … 32 Mbytes

Deducing Wireshark’s packet
shape

The txt file shows the USB traffic data is packetized.

The bin file has a header, followed by the packet data
which consists of some Wireshark inserted data (timing
etc.) then the actual transmitted/received USB data.

As we study the data, we can see that the Wireshark
packets contain 0x1c bytes of timing data, followed by a
4 byte packet size, then followed by that amount of data.
Everything is happening on 4 byte boundaries.

So, now we can start coding

First off I wrote a program to process the bin file.
So:

Read the Wireshark header and throw it away then:

• Read and discard each Wireshark timing header
• Read the 4 byte size counter
• Read the actual data
• Read to the end of the 4 byte boundary
• Repeat for each packet

USB messages - Types

We now have just the packets sent over USB.

Next step is to understand what they are instructing the
FTDI chip to do..

USB protocol has a whole set of pre-defined messages
that are sent to devices to start them, stop them, send
data, request data etc.

The one that sends data is the USB BULK OUT message.

USB messages - Endpoints

USB protocol also defines EndPoints.

These are basically ways of splitting a single physical USB
port into different virtual devices.

Usually there is a Control endpoint and a data endpoint.

In the code that we see, there are a number of
endpoints as the data out from the NIM comes via it’s
own endpoint (and associated control endpoint).

An example Bulk Out

 74171 14.062989 host 2.3.2 USB 64 URB_BULK out

0000 1b 00 40 1b f0 b5 85 95 ff ff 00 00 00 00 09 00 ..@.............

0010 00 02 00 03 00 02 03 25 00 00 00 80 03 13 80 03 %........

0020 13 80 03 13 80 03 13 80 01 13 80 01 13 80 01 13

0030 80 01 13 80 00 13 11 00 00 d2 80 00 11 27 00 87 '..

Here we can see an example BULK_OUT message.

It starts with a USB header byte counter (1b).
Then the header that specifies it is a bulk out.
Then a 4 byte data size field (25 00 00 00).

Following this header comes the actual data:
80 03 13 80 03 13 …

11 00 00 d2 80 00 11 27 00 87

Decoding the FTDI API

So, what do these data bytes tell the FTDI module?

There is a data sheet for the NIM itself – this tell us that
there are a number of I2C devices inside it (Amplifiers,
Demodulators (address=0xd2), Tuners etc.).

So, the FTDI code must be taking in data and outputting
it to I2C. A search of the app notes found FTDI AN_255:

 USB to I2C Example using the FT232H

 and FT201X devices - Bingo!

The app note formats:

In this app note we find a series of subroutines that will
allow control of the I2C bus. Here is an example:

BOOL SendByteAndCheckACK(BYTE dwDataSend)

{

 dwNumBytesToSend = 0;

 OutputBuffer[dwNumBytesToSend++] = 0x11;

 OutputBuffer[dwNumBytesToSend++] = 0x00;

 OutputBuffer[dwNumBytesToSend++] = 0x00;

 OutputBuffer[dwNumBytesToSend++] = dwDataSend;

 OutputBuffer[dwNumBytesToSend++] = 0x80;

 OutputBuffer[dwNumBytesToSend++] = 0xFE;

 …
Each USB transfer has a specific command at the start
(e.g. 0x11 in this example).

Decoding our first message

80 03 13 80 13 80 03 13 80 03 13 80 01 13 80

01 13 80 01 80 01 13 80 00 13 11 00 00 d2 80

00 11 27 00 87

Based on the earlier send byte routine, we can see that
this message (almost) has that sequence in it:

11 00 00 d2 80 00 11 27

But, it isn’t quite right. (the red bits).

What is going on

Apart from the command byte (the first one) and the
data bytes, the other messages are controlling the states
of the FTDI GPIO pins.

Clearly the Minitiouner is using some of these pins in a
slightly different way … but we can see from the
datasheet that it is controlling the USB lines exactly as
the example code does … now we are cooking on GAS
(but not for too many more years).

Long Story Short

We can now extend our parser to actually understand
the commands being sent to the FTDI module. These are
going to be in 2 parts:

• Setup of the FTDI chip
• Data to send over the I2C

This is a long, iterative, slog of coding but basically
means that we can extract all the USB messages as per
the FTDI app note.

Creating the state machine

Once we have decoded each FTDI message, we can
implement a state machine to interpret the USB traffic.

E.g. an I2C register write to the demodulator looks like:

• Set I2C Start state
• Send 0xd2 and check ACK
• Send data byte and check ACK
• Set I2C stop state
• Set I2C pins idle

So if we see all of these commands in this order we
know we are writing to the demodulator register.

Our parser output (662 kBytes)

Now, we can convert our huge data file into something a
little more readable (note the output is pseudo code):
…

nim_write_demod(0xf12a,0x38)

nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x05,&val) = 0x1a

nim_write_demod(0xf12a,0x38)

nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x06,&val) = 0x80

nim_write_demod(0xf12a,0x38)

nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x08,&val) = 0x0b

nim_write_demod(0xf12a,0x38)

nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x06,&val) = 0x80

nim_write_demod(0xf12a,0x38)

nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x01,&val) = 0x30

nim_write_demod(0xf12a,0x38)

…

What do we observe in the file

The parse starts off with a load of setup stuff (as
expected).

…

Received 230 fn=0x08 in message

ftdi_send_byte(0xaa)

ftdi_send_byte(0xaa)

Replied with error code 0xfa 0xaa

ftdi_send_byte(0xab)

Replied with error code 0xfa 0xaa 0xfa 0xab

ftdi_setup(0x8a,0x97,0x8d,0x80,0x13,0x13,0x82,0x6f,0xf1,0x86

,0x95,0x00,0x85)

ftdi_read_highbyte(0x83,&val)=0x65

…

This is all in keeping with the FTDI App note.

More Observations

Then we have over 600 repetitions of this weirdness:
…

nim_send_d0()

nim_send_d0()

nim_send_d0()

…

Then about 700 consecutive writes to the demodulator
(presumably initialisation) such as (remember this for
later):

nim_write_demod(0xf113,0x00)

nim_write_demod(0xf114,0x00)

nim_write_demod(0xf11a,0x05)

Yet More Observations

Followed by 20 writes to the tuner:
…

nim_write_tuner(0x00,0x75)

nim_write_tuner(0x01,0x50)

nim_write_tuner(0x02,0xce)

…

And then a few writes to each of the 2 Amplifiers (LNAs):
…

nim_write_c8(0x00,0x20)

nim_write_c8(0x01,0x0f)

nim_write_c8(0x02,0x50)

…

Finally we find a general mix of reads and writes until we
start getting huge BULK IN messages which we can
assume is the actual video stream.

A couple of notes

When you are sending USB data, sometimes there will
be a bus clash and you won’t get a valid response from
the USB controller. When parsing, we sometimes see
that things go out of sync and the Windows code retries
the send. This makes life a little more complex.

Also, there are a lot of individual setup commands
required to get the FTDI chip into the right state to do
the I2C handling. Parsing this was a lot of work, but
basically followed the FTDI data sheet.

Decoding the NIM API

Once we have all of these register writes, we can start to
look for repeating patterns (which will hopefully
correspond to loops in the original code).

Each time I found a pattern, I wrote a program to replace
the pattern with a single line e.g.
…

nim_read_demod(0xf201,&val) = 0x16

nim_read_demod(0xf201,&val) = 0x16

Got rw 1

Got rw 1

Got rw 1

…

First steps into decoding
register reads

The first thing to note when I did this was that the end
of the file now looked like:
…

Got loop 4

Got loop 4

Got loop 4

…

This I deduced was the monitoring phase after it had
started receiving video data.

By comparing the values coming back from the register
reads I could deduce some of the register meanings.

So where are we?

The code structure appears to be:

• Set up the hardware first (with the FTDI writes)
• Then it initialises the demodulator, the tuner and the

amplifiers with default values.
• Finally, when it is instructed to scan for a video

picture, it starts the scanning process
• Monitors until it finds a signal
• and begins displaying the video stream and

monitoring the status for display

First steps in coding

From the FTDI datasheet and the parsed code, we can
now do everything we need to set up the FTDI module.
• That was easily coded on the RPI.

Obviously this required a USB interface so that was
easily implemented with libusb.

Since this was to be integrated into the Portsdown
(which will handle all the user interactions) all
parameters required can be passed on the command
line.

USB – VID/PID

When a USB device is attached to a host machine, it
identifies itself with a VID/PID pair.

Since I wanted flexibility in my design, I wanted to allow
2 Minitiouners to be attached.

To solve this I identify the Minitiouners from their PID
and VID but access them via their Bus/Port numbers on
the actual device.

Read/Write Testing

My first coding target was to read a single register in
each of the tuner, amplifiers and the demodulator.

From the parsing, I knew what the registers should
contain so coding this was quite simple. It all worked
well, apart from reads of the tuner and the amps.

Going back to the parse file, I noted that each such read
was bracketed by modulator writes:
nim_write_demod(0xf12a,0xb8)

nim_read_tuner(0x06,&val) = 0x80

nim_write_demod(0xf12a,0x38)

Revelations

It appears that the I2C on the Tuner and the Amplifiers
are accessed via a “gateway” on the demodulator.

This makes sense from an electrical point of view as I2C
traffic can be isolated (and thus not cause interference)
with the tuner and amps which are very sensitive to
electrical noise.

This fix meant that I could now read (and write!) to all
the registers.

Data Output

As a test, I implemented a simple interface (using Linux
FIFOs) that would read video stream data from a file and
output it to a FIFO. This formed the basis of the video
output and display.

I also added a FIFO to output status information
(remember the status reporting used by Minitioune when
it had a lock on the video).

Linux FIFOs

Linux FIFOs are a very efficient implementation allowing
cross process communication.

 fd_status_fifo = open(status_fifo, O_WRONLY);

But, the fill up and choke, so I wrote a program to keep
emptying them (note the read and write options)!

 ret=mkfifo("longmynd_main_status", 0666);

 fd_status_fifo = open("longmynd_main_status", O_RDONLY);

 num=read(fd_status_fifo, status_message, 1);

Video Rendering

I then hooked up the video streaming software (already
available for the RPI and installed via Portsdown) to this
FIFO so that I could prove out the mechanisms.

mkfifo fifo.264

mkfifo longmynd_main_ts

/home/pi/longmynd/longmynd 436868 250 &

/home/pi/rpidatv/bin/ts2es -video longmynd_main_ts fifo.264 &

/home/pi/rpidatv/bin/hello_video.bin fifo.264 &

Once this worked, I knew that I could display TS video
when I managed to get it out of the NIM.

Error Handling

Normally with Embedded projects, there is no point in
doing any error handling as there is no way to do
anything about them if they occur.

However, in Open Source code, it is very much simpler to
understand code if, when playing with it, it reports errors.

So Every Routine Reports Errors and Call Stacks
associated with them

Also all init routines report their status for Trace purposes

And, because I could …

I added an interface to the longmynd code to allow the
video stream to be send over UDP to another host –
such as a cellphone or tablet – in case people wanted a
bigger picture!

sudo /home/pi/longmynd/longmynd -i 192.168.1.9 1234 436868

250 &

Note that some Routers don’t pass UDP very well!

Decoding the NIM API

Already available on Linux was an STV910 driver (the
Tuner). But it was incomplete.

ST Micro are only prepared to release the datasheets
under NDA.

• I managed to get taken on as an unpaid member
of staff of a small company to get them

API Overview

• 977 registers on the NIM
• Over 2000 fields
• 2 LNAs
• 2 Tuners
• 2 Demodulators
• Just under 10,000 lines of code

Some highlights of the code
development

Do you remember the parse file showed a section where
ever register was written as part of the initialisation?

One thing puzzled me, he wrote to all the registers in
turn but on one or two occasions he did a write that was
completely out of sequence and duplicated elsewhere
This is an extract from the datasheet init code.
…

{ RSTV0910_P1_PDELCTRL2, 0x00 } ,/* P1_PDELCTRL2 */

{ RSTV0910_P1_HYSTTHRESH, 0x41 } ,/* P1_HYSTTHRESH */

{ RSTV0910_P1_UPLCCST0, 0xe6 } ,/* P2_UPLCCST0 */

{ RSTV0910_P1_ISIENTRY, 0x00 } ,/* P1_ISIENTRY */

{ RSTV0910_P1_ISIBITENA, 0x00 } ,/* P1_ISIBITENA */

…

Coding principles

• Detailed code Documentation explaining every
action so that others could climb the learning curve.

• Modular design so that new NIMs could be easily
accommodated.

• Common structure to each driver code.
• Flexible initialisation routines to allow all possible

configurations (allow all devices to interact with all
other devices (E.g. allow LNA1 - Tuner2 - Demod1 -
USB2 etc).

Example code

 /* the global rdiv has already been set up in the init routines */

 /* p is defined from the datasheet (note, this is reg value, not P) */

 if (freq<=STV6120_P_THRESHOLD_1) p=3; /* P=16 */

 else if (freq<=STV6120_P_THRESHOLD_2) p=2; /* P= 8 */

 else if (freq<=STV6120_P_THRESHOLD_3) p=1; /* P= 4 */

 else p=0; /* P= 2 */

 /* we have to be careful of the size of the typesi in the following */

 /* F.vco=F.rf*P where F.rf=F.lo all in KHz */

 /* f_vco is uint32_t, so p_max is 3 (i.e P_max is 16), freq_max is */

 /* 2500000KHz, results is 0x02625a00 ... OK */

 f_vco = freq<<(p+1);

 /* n=integer(f_vco/f_xtal*R) note: f_xtal and f_vco both in KHz */

 /* we do the *R first (a shift by rdiv), and max is 0x04c4b400, then */

 /* the divide and we are OK */

Success So Far

• At the RSGB Construction Contest in 2019 there were
4 Portsdown’s entered. All 4 were running Longmynd
as the receiver. Longmynd won the software section.

• The Ryde Set Top Box was developed on top of
Longmynd.

• The Winterhill Multichannel Recevier was developed
on top of Longmynd.

• Longmynd has been ported to Windows as Open
Source.

• An Estimated 200 Instances are installed worldwide.

Questions

